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We present a method for simulating fluid vesicles with in-plane orientational ordering. The method involves
computation of local curvature tensor and parallel transport of the orientational field on a randomly triangulated
surface. It is shown that the model reproduces the known equilibrium conformation of fluid membranes and
work well for a large range of bending rigidities. Introduction of nematic ordering leads to stiffening of the
membrane. Nematic ordering can also result in anisotropic rigidity on the surface leading to formation of
membrane tubes.
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I. INTRODUCTION

The phenomenological models of fluid membrane confor-
mations have a remarkable simplicity due to the symmetry
constraints they must obey �1�. However, elementary ques-
tions on the large scale properties of fluid membranes remain
unresolved due to the technical complexity in analyzing the
statistical mechanics of these membrane models. This is in
particular the case for the entropy dominated properties of
membranes where assumptions of small configurational fluc-
tuations or perturbative considerations fail. But even for a
description of the membrane shapes at the mean-field level
there are many challenges. An alternative to the analytical
approach is computer simulations of self-avoiding fluid sur-
faces, which is viable both for studies of nonperturbative
phenomena and shape transformations. The numerical mod-
els of fluid membranes have been analyzed extensively, in
particular plaquette models, where the surface is constituted
by the plaquettes of a three-dimensional �3D� lattice �2–4�,
or O�n� lattice gauge models for n→0 in 3D �5�. A drawback
with the regular lattice based models of fluid membranes is
the discrete nature of the surface configurations, which make
a detailed description of surface properties impossible and
introduce phenomena which are not relevant for fluid mem-
branes, e.g., the roughening transition.

The third class of numerical models for membranes is the
triangulated random surfaces, which were introduced in sta-
tistical mechanics in context of Euclidean string theory
�6–9�. Combined with simulation techniques for self-
avoiding polymers, the triangulated random surfaces served
as models for lipid membrane conformations �10�. The fluid
nature of the membrane is represented by a planar, triangular
lattice structure, which is allowed to change connectivity
throughout the simulation. A major advantage of these dy-
namically triangulated surface models is that discrete surface

operators can be established which possess a simple con-
tinuum limit. The results from computer simulations of ran-
domly triangulated surfaces can thus be interpreted in terms
of continuum theory of membranes, the related literature has
been reviewed in �11,12�.

So far triangulated surface models only allowed for com-
puter simulations of membranes equipped with pseudoscalar
or scalar order parameters, e.g., mean curvature and density,
while many interesting physical questions arises when vector
or tensor order parameter fields are present in the plane of
the membrane. For instance, tilting of the lipid molecules
with respect to the surface normal, occurring in several of the
ordered phases of lipid bilayers, give rise to in-plane orien-
tational ordering �13�. Furthermore, two good experimental
evidences for the hexatic nature of the gel phase of lipid
bilayer membranes have been reported recently �14,15�. Sev-
eral classes of membrane inclusions have the character of
in-plane nematogens, e.g., antimicrobial peptides �16� and
Bar domain proteins, also see �17� and references within.
In-plane orientational order in membranes has received ma-
jor attention in the theoretical literature. In particular the
properties of hexatic membranes �18,19� and the Kosterlitz-
Thouless transition phenomena on membranes �20�, the ef-
fect of lipid tilt and chirality �21–26�, and the effect of sur-
factant polar head order �27�.

Here we present an approach to triangulated surface mod-
els of fluid membranes by combining the existing simulation
technique of dynamical triangulation with an approach to
compute the discretized local curvature tensor. The proper-
ties of the random surface in the new description are consis-
tent with those from earlier models.

Furthermore, we study membranes with in-plane nematic
order and show that it can give rise to nontrivial shapes. The
paper is organized as follows: Sec. II introduces continuum
models of membranes, the Helfrich Hamiltonian and its ex-
tension to include in-plane nematic fields with explicit cou-
pling to the membrane curvature. In Sec. III we present the
triangulated surface model which includes a detailed descrip-
tion of the local surface topography, parallel transport along
the surface and our numerical implementation of the model.
The Monte Carlo procedure for computer simulation of the
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equilibrium properties of the triangulated surface model with
in-plane orientational fields is described in Sec. IV. In Sec. V
we characterize the nature of the triangulated surface for dif-
ferent values of the bending moduli, without any in-plane
order, and compare our results with that obtained from ear-
lier simulations of membranes. In Sec. VI we discuss some
examples, in our discretized membrane model, where the ef-
fects of the in-plane ordering lead to some interesting shapes.

II. CONTINUUM MODELS

It has for long time been recognized that the large scale
conformations of a simple closed fluid lipid membrane can
be modeled by the Helfrich curvature energy functional �1�

Hc =
�

2
�

s

dA�2M − 2C0�2 +
�̄

2
�

s

dAK . �1�

It is a purely geometrical model, where the characteristics of
the surface is described by the conformation of the mem-
brane governed by the material constants, � the elastic bend-
ing rigidity, �̄ the Gauss curvature modulus and C0 the spon-
taneous mean curvature. K and M are the local Gauss and
mean curvature of the surface respectively. There are several
possible extensions of Eq. �1�, e.g., describing the effects of
membrane inclusions, in-plane density fluctuations or in-
plane order. Here we will discuss simple extensions of Eq.
�1�, now involving in-plane vector n̂ or a nematic tensor
ordering field 1

2 �n̂ � n̂�. For a vector field, represented by an
unit vector n̂, there is only one possible relevant extension of
Eq. �1�, to the lowest order in the order parameter �19�,

Hvec =
KA

2
�

s

dA��n̂:�n̂� , �2�

which facilitates an implicit coupling of the membrane ge-
ometry to the ordering field. KA is the stiffness constant and
� is the covariant gradient. The model and its extensions
have been analyzed in great detail �for review see chapters
by Nelson, David and by Gompper and Kroll in �12��. For a
nematic field, to the same order, the corresponding term is
the well known Frank’s free energy for nematics �28�

Hnem = �
s

dA�K1

2
�Div�n̂��2 +

K3

2
�Div�n̂���2� . �3�

n̂� is orthogonal to n̂ in the same plane. The in-plane Div�n̂�
and Div�n̂�� are the splay and bend contributions of the
nematic field, and K1 and K3 are the corresponding Frank
constants. The in-plane nematic field gives rise to a number
of new relevant couplings between the ordering field and the
curvature tensor �29�. A natural form of the free energy, that
describes an explicit coupling between the orientational field
and the curvature tensor, is given by �21–25,30�

Hnc = �
s

dA��	

2
�Hn,	 − c0

	 �2 +
��

2
�Hn,� − c0

��2
 , �4�

where Hn,	 is the directional curvature along n̂ and Hn,� is
the directional curvature along n̂�. c0

	 and c0
� are the corre-

sponding spontaneous curvatures. �	 and �� respectively are
the bending stiffness along n̂ and n̂�.

III. TRIANGULATED SURFACE MODEL

In this section we will consider discretized surfaces with
the topology of a sphere, while the considerations can readily
be extended to closed triangulated surfaces of arbitrary to-
pology �31,32�. Contrary to the standard differential geom-
etry of continuum models, the discretized formulation in this
section is given in Cartesian coordinates. The surface is dis-
cretized by a triangulation TN consisting of N vertices con-
nected by NL=3�N−2� links, or tethers, forming closed pla-
nar graphs. The graph form a system of NT=2�N−2�
triangles corresponding to a surface with total Euler index
�=N−NT−NL=2. Each vertex v takes a position X� �v� in R3.
The triangulation and the vertex position together form a
discretized surface, a patch of which is given in Fig. 1. The
self-avoidance of the surface is ensured by assigning a hard
core spherical bead of unit diameter to each vertex and a
maximal tether distance of �3. This is in general not suffi-
cient to impose strict self-avoidance �33,34�, but a mild con-
straint on the dihedral angle between two faces sharing a
tether restores self-avoidance.

The in-plane orientational field can be included by defin-
ing a unit vector n̂�v� in the tangent plane at each vertex v. In
the following we will give meaning to this statement by
analysis of the local surface topography and in turn calculate
the curvature tensor, principal directions and curvature in-
variants �35,36�. The approach is based on the construction
of the discretized “shape operator” given by the differential

form −dN̂ in the plane of the surface, which contains all
information about the local surface topography.

�R(e)N̂(e)

Φ(e)

N̂ [f1(e)] N̂ [f2(e)]

N̂(v)

v

1

2

3

4

5

6

FIG. 1. �Color online� Surface patch in a one ring neighborhood
around vertex v. The edge e connects, in this description, v to 1.

The edge vector is R� �e�=X� �1�−X� �v� and N̂�e� is its normal. Edge e

is shared by two faces f1�e� and f2�e� with N̂�f1�e�� and N̂�f2�e��,
respectively, being their normals. The normal to vertex v is repre-

sented by N̂�v�.
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Consider a local neighborhood around a vertex v, as
shown in Fig. 1. R� �e� is the edge vector that links v to a
neighboring vertex. The set of edges linked to v is �e
v, while
the oriented triangles or faces with v as one of their vertex is
�f
v. The calculation of the surface quantifiers at v is re-
stricted to the one ring neighborhood around it, which is well
defined by �e
v and �f
v. Similarly the set of faces sharing an
edge is given by �f
e= �f1�e� , f2�e��. The normal to an edge e
then is defined as,

N̂�e� =
N̂�f1�e�� + N̂�f2�e��

�N̂�f1�e�� + N̂�f2�e���
, �5�

where N̂�f1�e�� and N̂�f2�e�� are the unit normal vectors to
faces f1�e� and f2�e�, respectively.

We will now construct a shape operator at every vertex v.
Toward this, we define

H�e� = 2�R� �e��cos���e�
2

� , �6�

which quantifies the curvature contribution along the direc-

tion mutually perpendicular to R� �e� and N̂�e� �35–37� .��e�
is the signed dihedral angle between the faces, f1�e� , f2�e�,
sharing the edge e calculated as

��e� = sign��N̂�f1�e��

� N̂�f2�e��
 · R� �e��arccos�N̂�f1�e�� · N̂�f2�e��
 + � .

�7�

The discretized “shape operator,” which quantifies both the
curvature and the orientation of e is thus the tensor

Se�e� = H�e��R̂�e� � N̂�e���R̂�e� � N̂�e�� , �8�

where R̂�e�=R� �e� / �R� �e�� is the unit vector along edge e. Hav-
ing defined the shape operators, �Se�e�
, along the edges of
the vertex v, we now proceed to compute the shape operator
at v. The normal to surface at v can be calculated as

N̂�v� =
��f
v

��A�f��N̂�f�

���f
v
��A�f��N̂�f��

, �9�

with A�f� denoting the surface area of the face f and the
normalized weight factor ��A�f�� is proportional to the area

of the face. The projection operator, P�v�=1− N̂�v�N̂�v�,
projects �Se�e�
 on to the tangent plane at v �35,36�. The
shape operator at the vertex v is then a weighted sum of
these projections given by

Sv�v� =
1

A�v���e
v

W�e�P�v�†Se�e�P�v� . �10�

A�v�=��f
v
A�f� /3 is the average surface area around v, while

the weight factor for an edge is calculated as W�e�
= N̂�v� · N̂�e�. The shape operator Eq. �10� at the vertex v is
expressed in coordinates of the global reference system

�x̂ , ŷ , ẑ�. Notice that, by construction, the vertex normal N̂�v�

is an eigenvector of, Sv�v�, corresponding to eigenvalue zero.
The two other principal directions t̂1�v�, t̂2�v�, whose corre-
sponding eigenvalues are the principal curvatures, define the
tangent plane at the vertex v. A local coordinate frame called

the Darboux frame �t̂1�v� , t̂2�v� , N̂�v��, see Fig. 2, can then be
defined at v. The transformation from the global to Darboux
frame, see Fig: 2, is obtained by first applying a Householder
transformation �H�, see Appendix A, to rotate the global ẑ

direction into N̂�v�, while x̂ and ŷ are rotated into vectors
x̂� , ŷ� in the tangent plane at the vertex v. The shape operator,
at v, in this frame C�v�=H†�v�Sv�v�H�v� is a 2�2 minor,
with the two principal curvatures c1�v� and c2�v� as its ei-
genvalues. The corresponding eigenvector matrix E�v� trans-

form �x̂� , ŷ� , N̂�v�� into the Darboux frame at v. Any vector
in the global frame, can now be transformed to this local
frame by the transformation matrix E�v�H�v�.

We are now in the position to write up the discretized
form of Helfrich’s free energy, at a vertex v, based on the
local curvature invariant M�v�= �c1�v�+c2�v�� /2 and K�v�
=2c1�v�c2�v�,

Hc = �
v=1

N

A�v���

2
�c1�v� + c2�v��2 + �̄c1�v�c2�v�
 . �11�

The calculation of the discrete curvature tensor has been per-
formed by other methods �38,39�, however we find the
method used in this paper to be the most accurate in describ-
ing surfaces with prescribed geometry. The local Darboux
frame is very useful for the characterization of an in-plane
vector field n̂�v�. For convenience, we choose c1�v� to be the
maximum principal curvature and t̂1�v� the corresponding
principal direction. The local orientational angle ��v� of n̂�v�
will always refer to this Darboux frame.

In order to compare the orientation of two distant in-plane
vectors at the surface, it is necessary to perform parallel
transport of the vectors on the discretized surface. In practice
we need only to define the parallel transport between neigh-
boring vertices, i.e., a transformation n̂�v��→�� �v ,v��n̂�v�,
which brings n̂�v� correctly into the tangent plane of the
vertex v�, so that its angle with respect to the geodesic con-
necting v and v� is preserved. If r̂�v ,v�� is the unit vector
connecting a vertex v to its neighbor v� and 	��v�
=P�v�r̂�v ,v�� and 	��v��=P�v��r̂�v� ,v� are its projection on
to the tangent planes at v and v�; then our best estimate for
the directions of the geodesic connecting them, are the unit

vectors 	̂�v� , 	̂�v��. The decomposition of n̂�v� along the ori-

EH

EH
t̂1

t̂2

x̂
′

ŷ
′

x̂
′′

= t̂1

ŷ
′′

= t̂2

ẑ
′′

= N̂ẑ
′

= N̂

x̂

ŷ

ẑ

N̂

Global Darboux

FIG. 2. �Color online� Transformation from a global to local
coordinate frame.
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entation of the geodesic and its perpendicular in the tangent
plane of v is thus

n̂�v� = �n̂�v� · 	̂�v��	̂�v� + �n̂�v� · �N̂�v� � 	̂�v��


��N̂�v� � 	̂�v�� . �12�

Parallelism now demand that these coordinates, with respect
to the geodesic orientation, are the same in the tangent plane
of v�, therefore

�� �v,v��n̂�v� = �n̂�v� · 	̂�v��	̂�v�� + �n̂�v� · �N̂�v� � 	̂�v��


��N̂�v�� � 	̂�v��� . �13�

This parallel transport operation allow us to define the angle

�v ,v�� between vectors in the tangent plane at neighboring
vertices, and in turn their cosine and sine as

cos�
�v,v��� = n̂�v�� · �� �v,v��n̂�v� ,

sin�
�v,v��� = �N̂�v�� � n̂�v��� · �� �v,v��n̂�v� . �14�

We can now define the lattice models, corresponding to Eqs.
�2� and �3�, for the in-plane orientational field, e.g., the XY
model on a random surface,

HXY = −
�XY

2 �
�vv��

cos�
�v,v��� �15�

or the Lebwohl-Lasher model on a random surface,

HLL = −
�LL

2 �
�vv��

�3

2
cos2�
�v,v��� −

1

2
� . �16�

Furthermore, we are now in a position to calculate, at a given
vertex v, the directional curvatures along and perpendicular
to the orientation of the in plane vector field n̂�v� by use of
Gauss formula,

M�v�	 = c1�v�cos2���v�� + c2�v�sin2���v�� ,

M�v�� = c1�v�sin2���v�� + c2�v�cos2���v�� . �17�

IV. MONTE CARLO PROCEDURE

The equilibrium properties of the discretized surface can
now be evaluated from the analysis of the total partition
function, i.e., the sum of Boltzmann factors for all surface
configurations and triangulations. For simplicity, we consider
the situation with just one in-plane orientational n̂�v� field
defined at each vertex

Z�N,�,�̄,�, . .�

=
1

N!�TN
�
v=1

N � dX� �v�� d��v�exp�− ��Hc��X� �,TN,����

+ USAS
� , �18�

where USAS is the potential that ensures the self-avoidance of
the surface and ��v� is integrated over the unit circle or half

unit circle for the XY field and the nematic field respectively.
�X� 
 and ��
 are, respectively, the complete set of vertex po-
sitions and orientational angles. Further, we set �= 1

kBT =1. In
practice, a surface configuration is represented by a tuple 

= ��X� 
 ,TN , ��
�, which must be updated during the Monte
Carlo simulation procedure. The Monte Carlo updating
scheme can now be decomposed into three move classes, so
each of the three sets of degrees of freedom are updated
independently to keep it simple and ensure fulfillment of
detailed balance,

Vertex shifts represent the updates of the vertex positions,
keeping TN , ��
 fixed, thus allowing for shape changes of the
membrane. The attempt probability to change to a new con-
figuration 
�= ��X�� 
 ,TN , ��
�, with a chosen vertex moved to
a new position within a cube of side 2� centered around its
old position, is ��
 �
��=��
� �
�= ��2��3N�−1. � is appro-
priately chosen to get a reasonable acceptance rate of
30–50 %. In our simulations �=0.1 is chosen. With this sur-
face updating operation, the curvature tensor and thus the
principal axis change. Since the angle ��
 is kept fixed, the
set of orientations �n̂
, in the global frame, are changed fol-
lowing the local surface configuration, Fig. 3�a�.

Link flip represents updating of the triangulation. Here a
link, e connecting a vertex v to v�, is picked at random and
an attempt is made to flip it to the pair of opposite vertices
common to v and v�. The attempt probability to change to
configuration 
�= ��X� 
 ,T�N , ��
� is then ��
 �
��=��
� �
�
=1 /NL. Similar to vertex shifts, the actual orientations �n̂

are now changed, following the local surface configuration,
Fig. 3�b�.

Angle rotation: the orientation of the in-plane vector n̂�v�,
at a randomly chosen vertex v, is updated. The vector is
rotated to a new, randomly chosen, direction in the tangent
plane, keeping the vertex positions and link directions fixed.
As a result of which the orientational angle is now ���v�
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���������������
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FIG. 3. �Color online� Schematic representation of the Monte
Carlo moves, �a� vertex shift, �b� link flip and �c� angle rotation in
a surface patch. Solid arrow represent the surface vector field, n̂,
while principal directions ê1 and ê2 are marked with dotted arrows.
� is the angle n̂ subtends with ê1.

RAMAKRISHNAN, SUNIL KUMAR, AND IPSEN PHYSICAL REVIEW E 81, 041922 �2010�

041922-4



=��v�+���v�. The attempt probability to configuration 
�
= ��X� 
 ,TN , ���
� is ��
 �
��=��
� �
�= �2��N�−1, where ��

�� is the maximum increment of the angle. The surface
topography is not affected by this move, Fig. 3�c�.

For each of the above moves, the acceptance probability
is

acc�
�
�� = min�1,
��
��
�
��
�
��

exp�− ��H�
�� − H�
��
� .

�19�

The duration of a Monte Carlo simulation is measured in
MCS �Monte Carlo sweeps per Site�, which represents N
attempted vertex moves, 3�N−2� attempted flips and N at-
tempted rotations of n̂.

V. RESULTS AND DISCUSSION

A. Vesicles with no in-plane order

In the first part of this section we will discuss the proper-
ties of this new discretized random surface description of
membrane conformations for a simple, closed, fluid mem-
brane of spherical topology, with no in-plane order. All simu-
lations reported in this paper are carried out with �̄=0. Sys-
tem sizes in the range N=77 to 3677 and bending rigidity in
the range �=0 to 1000 were investigated to compare it with
the previously known results for these systems. Applying the
equipartition theorem to Gaussian or quasispherical configu-
rational fluctuations shows that the expected behavior is
�Hc�

� →8�+ N−1
2

1
� . In Fig. 4, it is shown that the ensemble

averaged curvature energy of the vesicle,
�Hc�

� indeed ap-
proaches 8� for large �. In the opposite limit of small � the
literature is largely focused on the crumpling transition. Such
a transition should be indicated by the presence of a peak or
a cusp in the specific heat,

C�N,�� =
1

N
��Hc

2� − �Hc�2� . �20�

C�N ,��, as a function of � for different N, is shown in Fig. 5.
The shape of the curve is similar to what has been reported

by earlier simulations �40–42�. As reported in these papers,
we find that the peak height �Cmax� stops growing and the
peak position ���� saturates to a constant value beyond sys-
tem size N�500 �see Fig. 5�. In the aysmptotic limit �� and
Cmax, in dimensionless units, saturates to approximately 4.4
and 1.4, respectively. The smooth and finite nature of
C�N ,�� for large N shows that this measure does not indicate
the presence of a first order or a continuous transition in the
thermodynamic limit. However, a continuous transition can-
not be completely ruled out. If � is an irrelevant thermody-
namic variable under RG transformation, it just leaves a cusp
in C�N ,�� at the transition, a similar phenomena is well-
known for the � transition of He3-He4 mixtures �43�. Note
that the value of �� appears to be roughly five times that of
the previously reported values �40,42�. This is a clear indi-
cation of that the new measure of local mean curvature dif-
fers from that used previously, although the prediction of a
low � cusp in C�N ,�� persists. A simple quantifier of mem-
brane conformations used in triangulated surface simulations
is the gyration tensor

G =
1

2N2 �
v,v�

N

�X� �v� − X� �v����X� �v� − X� �v���†,

with RG
2 =Tr�G� as the simplest invariant. For the flexible,

tethered, self-avoiding random surfaces RG
2 �N�. Earlier

simulations report �=0.8 �34� and �=1. �40�. As shown in
Fig. 6 we find that RG

2 �N for all values of �, which is char-
acteristic of the self-avoiding branched polymer and quasi-
spherical configurations �4�. The similarity of the exponent
makes an analysis of the crossover, between the branched
polymer configurations at low � and quasispherical shapes at
high �, very difficult by use of RG

2 . This is better accom-
plished by analysis of the vesicle volume, which in previous
vesicle simulations have been shown to obey the simple scal-
ing ansatz V=N3/2f��aN /�p����, where f�x� is a scaling
function and �p��� is a crossover length scale, identified with
the persistence length �33,44�. This universal scaling behav-
ior also holds for our new triangulated surface model as
shown in Fig. 7. Here, for each �, �p is chosen such that we
obtain good data collapse. It has been found by RG-analysis
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that �p for a fluctuating smooth continuous surface, embed-
ded in 3D space, depends on � as exp�4�� /3KbT� �45�. This
dependence has been verified numerically by previous trian-
gulated surface simulations �33�. However, the persistence
length, obtained from the scaling plots shown in Fig. 7, pre-
dicts a different dependence on � �see Fig. 8�. In the flexible
regime, ��3kbT, an approximate exponential behavior
exp�c� /kbT�, c�� /6, is seen while in the semiflexible re-
gime, ��3kbT, a stronger dependence of �p on � is found.
Our data does not allow for a determination of the
asymptotic behavior of �p��� for large �. The scaling func-
tion f���, where �=�N�p

−1, is a constant for small � �semi-
flexible regime� and is ��−1 for large values of �, indicat-
ing a branched polymer behavior in the flexible regime, see
Fig. 7. This suggest that, in this model, the effective bending
rigidity is a decreasing function of temperature, with c satu-
rating to 4� /3 at low temperatures. Overall, we have shown
in this section that the new algorithm reproduce the expected
behavior of vesicles governed by Helfrich’s free energy,
given in Eq. �1�, in the rigid regime of high �. In the flexible
to semi-flexible regimes of low � values, our new numerical
representation of the geometry and energetics of vesicles

produce a behavior which is qualitatively in agreement with
previous triangulated surface models of vesicles. However,
the cusp in the specific heat has shifted to higher � value.
The flexible regime at � values below the cusp is more rigid
compared to previous models with an approximate exponen-
tial dependence between the persistence length and � and
�p�����10. Above �� the increase in �p is much stronger. We
attribute the differences between the present model and pre-
vious models to the use of different surface quantifiers.

B. Membranes with in-plane nematic order

We will consider the case of a randomly triangulated sur-
face with an in-plane nematic field. These systems, in the
continuum limit, are described by a free energy functional
which contains, in addition to the basic Helfrich curvature
elastic part Eq. �1�, terms describing nematic-nematic inter-
actions Eq. �3� and the coupling of the nematic field to the
membrane curvature Eq. �4�. For the discretized nematic-
nematic interactions we have employed the Lebwohl-Lasher
�46,47� model, described in Eq. �16�, which corresponds the
one constant approximation of Frank’s free energy given in
Eq. �3�. The total discretized free energy functional then
takes the form

H =
�

2 �
v=1

N

M�v�2A�v� −
�LL

2 �
v

�
v���v


�3

2
cos2�
�v,v��� −

1

2
�

+
�	

2 �
v=1

N

�Hn̂�v�,	 − c0
	 �2A�v� +

��

2 �
v=1

N

�Hn̂�v�,� − c0
��2A�v� ,

�21�

where, Hn̂�v�,	 =n1�v�2c1�v�+n2�v�2c2�v� and Hn̂�v�,�
=n1�v�2c2�v�+n2�v�2c1�v�are the directional curvatures at a
vertex v, see Eq. �17�. M�v�= �c1�v�+c2�v�� /2 is the corre-
sponding mean curvature. Note that this free energy is ex-
pressed in the local Darboux frame of reference, described in
Sec. III. n1�v� and n2�v� are the components of the nematic
director in this local frame, and c1�v� and c2�v� are its prin-
cipal curvatures. A�v� is the area of the polygonal surface
defined by its nearest neighbors.
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We will, in what follows, demonstrate the use of the al-
gorithm by studying the effect of in-plane orientational or-
dering on membrane conformations. A detailed quantitative
analysis and phase diagram of the vesicles shapes and in-
plane ordering that can result from Eq. �21� will be published
elsewhere.

1. Membrane stiffness originating from the nematic field

First we consider the case with �=0, �	�0, and c	 =0. We
choose ��=0 so that the nematic field does not directly in-
fluence the bending modulus perpendicular to it. Such a situ-
ation may arise in the case of long thread like inclusions.
�LL=3 is chosen to favor in-plane nematic order.

Characteristic equilibrium configurations corresponding
to �	 =0 and 20 are shown in Fig. 9. For �	 =0 the common
shapes are deformed tetrahedrons with four well-defined cor-
ner points. The in-plane orientational field displays perfect
nematic ordering except at the corner points where a discli-
nation with index 1/2 is located. A snapshot of one of these
disclinations is shown in Fig. 9�c�. Since these are the only
disclinations, the total index is 2, in accordance with
Poincare’s index theorem. The surface appear crinkled with
local scale roughness. For �	 =20 the vesicle shape becomes
elongated, with the long axis following the orientation of the
nematic field, with sharp ends. The two 1/2 defects are now
joined to form a defect of index 1, and is located at the two
ends.

Membrane without stiffness and nematic degrees of free-
dom has branched polymer configurations. While our simu-
lations show that, for the same system size, such a phase is
absent in membranes with in-plane order. It thus follows that
in-plane ordering induces configurational stiffness of
vesicles. Signature of this stiffness can also be seen in the
distribution of eigenvalues of the gyration tensor for two
different values of �LL. As can be seen in Fig. 10, the distri-
bution of higher eigenvalues are narrower for higher �LL,
indicating stiffening. We note that the anisotropic elasticity
of the membrane, arising through this nematic orientation, is
similar to that suggested by Fošnarič et al. �48�.

2. Positive spontaneous curvature

Making c0
	
�0 imply that the nematic field favors a spe-

cific value of positive curvature along the direction of its
axis. In Fig. 11 is shown representative equilibrium configu-

rations for �LL=3, ��=0, �	 =20, c	
0=0.5, and �=2.5�a�,

10�b�. For �=2.5 the vesicle shape transforms to branched
structure with long irregular tubes of varying radius. The
nematic field now spirals around the tubes. The angle made
by the nematic field with the azimuthal direction increases
with decrease in local tube radius. The caps of the tubular
structures are quipped with disclination pairs of index 1/2,
while two disclinations with index −1 /2 are situated in the
branch points. The tubes themselves tend to spiral over
longer distances, as can be seen from Fig. 11�a�. This spiral-
ing can both be right and left handed, indicating no chiral
preference. For �=10 this picture persists, except the nem-

(a) (b) (c)

FIG. 9. �Color online� Equilibrium configuration of a nematic
embedded vesicle with �=0, c	

0=0, �LL=3.0, ��=0 and �a� �	 =0,
mere presence of an nematic field in the ordered phase cuts off the
entropy dominated branched polymer phase seen otherwise �b� �	

=20 and �c� a corner with defect of index + 1
2 is shown for �	 =0. All

data are for a triangulated surface with 1202 vertices.
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atic ordering match up with the azimuthal direction of the
tubes, no chiral ordering of the tubes are observed and the
tube radius match with the that set by c	

0.

3. Negative spontaneous curvature

Negative spontaneous curvature, c0
	
�0, implies that the

nematic will now prefer to orient along directions where the
membrane curvature is negative �curved into the vesicle�. In
Fig. 12 is shown examples of equilibrium configurations for
�=0 and �=10, where �LL=3.0, �	 =30, ��=0, c	

0=−0.5, and
��=0. Inward tubulation results in stiffening of the outer
boundary of the vesicle as shown in Fig. 12. In contrary to
the tubulation seen in the case of C0

	
�0, self-avoidance con-

dition of the membrane now prevents complete tube forma-
tion. Similar to the c0

	
�0 case, increasing � increases the

thickness of the tubes. The nematic ordering is along the
azimuthal direction for �=10, while spiraling is observable
for �=0. On the outer surface, defects of index − 1

2 are
clearly observed.

VI. CONCLUSION

We have presented a methodology for calculating surface
quantifiers on self-avoiding triangulated random surface
models of fluid membranes. The method involves calcula-
tions of the local geometrical properties at the vertex posi-
tions of the surface, e.g., calculation of the local Darboux
frame and the principal curvature radii of the surface. We
have described a procedure for parallel transport of in-plane
vectors between vertex points. We have implemented the nu-
merical model and performed Monte Carlo simulations of
the equilibrium properties of the surface. The simulations of

the discretized form for the Helfrich’s free energy are in
good qualitative agreement with the results from previous
numerical simulations. In the flexible limit of low bending
rigidity the membrane scales as a branched polymer and a
scaling relation involving volume, system size and persis-
tence length holds. For small values of �, calculations using
the new discrete Hamiltonian shows a faster increase, as a
function of �, in the persistence length compared to the pre-
vious model.

The model has been extended to include an in-plane nem-
atic field and equilibrium shapes have been obtained for
some simple examples. We show that the presence of a nem-
atic ordering leads to suppression of the branched polymer
phase even when the bare bending rigidity is zero. The con-
formational changes in a fluid membrane brought about by
the anisotropy in the bending rigidity and the spontaneous
curvature induced by the nematic field are demonstrated. We
have demonstrated that the presence of the in-plane nematic
field leads to coupling between geometry and nematic defect
structures of the membrane. It is shown that this coupling
can lead to chiral structures in membrane even in the absence
of explicit chiral terms in the Hamiltonian.
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APPENDIX A: HOUSEHOLDER TRANSFORMATION

Consider two orthonormal frames of reference given by

the coordinates �x̂ , ŷ , ẑ� and �â , b̂ , ĉ�. The Householder ma-
trix H, can be used to rotate ẑ in frame 1 to ĉ in frame 2, such
that �x̂ , ŷ� now are some arbitrary vectors in the plane formed

by �â , b̂�. Define a vector,

W =
x̂ � ĉ

�x̂ � ĉ�
�A1�

with a minus sign if 	x̂− ĉ	� 	x̂+ ĉ	 and a plus if otherwise.
The Householder matrix is then defined as

H = 1 − 2WW†. �A2�
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�9� A. Polyakov, Phys. Lett. B 103, 207 �1981�.
�10� J. Ho and A. Baumgartner, Europhys. Lett. 12, 295 �1990�.
�11� D. Morse, Curr. Opin. Colloid Interface Sci. 2, 365 �1997�.
�12� Statistical Mechanics of Membranes and Surfaces, 2nd ed.,

edited by D. Nelson, T. Piran, and S. Weinberg �World Scien-
tific, Singapore, 2003�.

�13� J. F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta 1469,
159 �2000�.

(a) (b) (c)

FIG. 12. �Color online� Configurations of membranes, with �	

=30, �LL=3.0, c	
0=−0.5, ��=0 for �a� �=0 and �b� �=10. �c� is the

mesh representation of the surface in �b� which clearly shows tubes
grown inward.

RAMAKRISHNAN, SUNIL KUMAR, AND IPSEN PHYSICAL REVIEW E 81, 041922 �2010�

041922-8

http://dx.doi.org/10.1063/1.437016
http://dx.doi.org/10.1021/j100210a011
http://dx.doi.org/10.1021/j100210a011
http://dx.doi.org/10.1016/0550-3213(83)90048-2
http://dx.doi.org/10.1016/0550-3213(83)90048-2
http://dx.doi.org/10.1016/0550-3213(87)90162-3
http://dx.doi.org/10.1016/0370-2693(85)90255-2
http://dx.doi.org/10.1016/0370-2693(85)90669-0
http://dx.doi.org/10.1016/0370-2693(85)90669-0
http://dx.doi.org/10.1016/0550-3213(85)90356-6
http://dx.doi.org/10.1016/0550-3213(85)90356-6
http://dx.doi.org/10.1016/0370-2693(81)90743-7
http://dx.doi.org/10.1209/0295-5075/12/4/002


�14� U. Bernchou et al., J. Am. Chem. Soc. 131, 14130 �2009�.
�15� E. B. Watkins, C. E. Miller, D. J. Mulder, T. L. Kuhl, and J.

Majewski, Phys. Rev. Lett. 102, 238101 �2009�.
�16� H. Bouvrais et al., Biophys. Chem. 137, 7 �2008�.
�17� J. Zimmerberg and M. M. Kozlov, Nat. Rev. Mol. Cell Biol. 7,

9 �2006�.
�18� D. R. Nelson and L. Peliti, J. Phys. �France� 48, 1085 �1987�.
�19� F. David, E. Guitter, and L. Peliti, J. Phys. 48, 2059 �1987�.
�20� J.-M. Park and T. C. Lubensky, Phys. Rev. E 53, 2665 �1996�.
�21� W. Helfrich and J. Prost, Phys. Rev. A 38, 3065 �1988�.
�22� P. Nelson and T. Powers, Phys. Rev. Lett. 69, 3409 �1992�.
�23� J. V. Selinger, F. C. MacKintosh, and J. M. Schnur, Phys. Rev.

E 53, 3804 �1996�.
�24� Z. C. Tu and U. Seifert, Phys. Rev. E 76, 031603 �2007�.
�25� H. Jiang, G. Huber, R. A. Pelcovits, and T. R. Powers, Phys.

Rev. E 76, 031908 �2007�.
�26� H. Koibuchi, Phys. Rev. E 77, 021104 �2008�.
�27� J.-B. Fournier and P. Galatola, Braz. J. Phys. 28, 329 �1998�.
�28� F. C. Frank, Discuss. Faraday Soc. 25, 19 �1958�.
�29� L. Peliti and J. Prost, J. Phys. �France� 50, 1557 �1989�.
�30� J. R. Frank and M. Kardar, Phys. Rev. E 77, 041705 �2008�.
�31� C. Jeppesen and J. Ipsen, Europhys. Lett. 22, 713 �1993�.
�32� G. Gompper and D. M. Kroll, Phys. Rev. Lett. 81, 2284

�1998�.
�33� J. Ipsen and C. Jeppesen, J. Phys. I �France� 5, 1563 �1995�.
�34� J. Ho and A. Baumgartner, Phys. Rev. A 41, 5747 �1990�.

�35� K. Hildebrandt and K. Polthier, in Proceedings of EURO-
GRAPHICS 2004, edited by M. P. Cani and M. Slater �Black-
well, Oxford, 2004� Issue 3, Vol. 23.

�36� K. Hildebrandt, K. Polthier, and M. Wardetzky, in SGP ’05:
Proceedings of the Third Eurographics Symposium on Geom-
etry Processing, edited by M. Desbrun and H. Pottmann �Eu-
rographics Association, Switzerland, 2005�, p. 85.

�37� K. Polthier, Polyhedral Surfaces of a Constant Mean Curva-
ture �Habilitationsschrift Technische Universität, Berlin,
2002�, p. 85.

�38� G. Taubin, in International Conference on Computer Vision
(ICCV) �IEEE Computer Society, Washington, 1995�, pp. 902–
907.

�39� E. Hameiri and I. Shimsoni, IEEE Trans. Syst., Man, Cybern.,
Part B: Cybern. 33, 626 �2003�.

�40� D. M. Kroll and G. Gompper, Science 255, 968 �1992�.
�41� J. Ambjørn, A. Irb äck, J. Jurkiewicz, and B. Petersson, Nucl.

Phys. B 393, 571 �1993�.
�42� K. Anagnostopoulos et al., Phys. Lett. B 317, 102 �1993�.
�43� E. Batyev, A. Patashinskii, and V. Pokrovskii, Sov. Phys. JETP

20, 398 �1965�.
�44� G. Gompper and D. M. Kroll, Phys. Rev. E 51, 514 �1995�.
�45� L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 �1985�.
�46� P. Lebwohl and G. Lasher, Phys. Rev. A 6, 426 �1972�.
�47� U. Fabbri and C. Zannoniem, Mol. Phys. 58, 763 �1986�.
�48� M. Fošnarič et al., J. Chem. Inf. Model. 45, 1652 �2005�.

MONTE CARLO SIMULATIONS OF FLUID VESICLES… PHYSICAL REVIEW E 81, 041922 �2010�

041922-9

http://dx.doi.org/10.1021/ja903375m
http://dx.doi.org/10.1103/PhysRevLett.102.238101
http://dx.doi.org/10.1016/j.bpc.2008.06.004
http://dx.doi.org/10.1038/nrm1784
http://dx.doi.org/10.1038/nrm1784
http://dx.doi.org/10.1103/PhysRevE.53.2665
http://dx.doi.org/10.1103/PhysRevA.38.3065
http://dx.doi.org/10.1103/PhysRevLett.69.3409
http://dx.doi.org/10.1103/PhysRevE.53.3804
http://dx.doi.org/10.1103/PhysRevE.53.3804
http://dx.doi.org/10.1103/PhysRevE.76.031603
http://dx.doi.org/10.1103/PhysRevE.76.031908
http://dx.doi.org/10.1103/PhysRevE.76.031908
http://dx.doi.org/10.1103/PhysRevE.77.021104
http://dx.doi.org/10.1590/S0103-97331998000400008
http://dx.doi.org/10.1039/df9582500019
http://dx.doi.org/10.1103/PhysRevE.77.041705
http://dx.doi.org/10.1209/0295-5075/22/9/013
http://dx.doi.org/10.1103/PhysRevLett.81.2284
http://dx.doi.org/10.1103/PhysRevLett.81.2284
http://dx.doi.org/10.1051/jp1:1995217
http://dx.doi.org/10.1103/PhysRevA.41.5747
http://dx.doi.org/10.1109/TSMCB.2003.814304
http://dx.doi.org/10.1109/TSMCB.2003.814304
http://dx.doi.org/10.1126/science.1546294
http://dx.doi.org/10.1016/0550-3213(93)90074-Y
http://dx.doi.org/10.1016/0550-3213(93)90074-Y
http://dx.doi.org/10.1016/0370-2693(93)91577-A
http://dx.doi.org/10.1103/PhysRevE.51.514
http://dx.doi.org/10.1103/PhysRevLett.54.1690
http://dx.doi.org/10.1103/PhysRevA.6.426
http://dx.doi.org/10.1080/00268978600101561
http://dx.doi.org/10.1021/ci050171t

